
Wider Vision: Enriching Convolutional Neural Networks via
Alignment to External Knowledge Bases

Xuehao Liu
Technological University Dublin

Dublin, Ireland
xuehao.liu@tudublin.ie

Sarah Jane Delany
Technological University Dublin

Dublin, Ireland
sarahjane.delany@tudublin.ie

Susan McKeever
Technological University Dublin

Dublin, Ireland
susan.mckeever@tudublin.ie

ABSTRACT
Deep learning models suffer from opaqueness. For Convolutional
Neural Networks (CNNs), current research strategies for explaining
models focus on the target classes within the associated training
dataset. As a result, the understanding of hidden feature map acti-
vations is limited by the discriminative knowledge gleaned during
training. The aim of our work is to explain and expand CNNs mod-
els via the mirroring or alignment of the network to an external
knowledge base. This will allow us to give a semantic context or
label for each visual feature. Using the resultant aligned embedding
space, we can match CNN feature activations to nodes in our exter-
nal knowledge base. This supports knowledge-based interpretation
of the features associated with model decisions.

To demonstrate our approach, we build two separate graphs
from: (1) ConceptNet knowledge base and (2) a public CNN. We
use an entity alignment method to align the feature nodes in the
CNNwith the nodes in the ConceptNet based knowledge graph. We
then measure the proximity of CNN graph nodes to semantically
meaningful knowledge base nodes. Our results show that in the
aligned embedding space, nodes from the knowledge graph are close
to the CNN feature nodes that have similar meanings, indicating
that nodes from an external knowledge base can act as explanatory
semantic references for features in the model. We analyse a variety
of graph building methods in order to improve the results from our
embedding space.We further demonstrate that by using hierarchical
relationships from our external knowledge base, we can locate new
unseen classes outside the CNN training set in our embeddings
space based on visual feature activations. This suggests that we
can adapt our approach to identify unseen classes based on CNN
feature activations. Our demonstrated approach of aligning a CNN
with an external knowledge base paves the way to reason about and
beyond the trained model, with future adaptations to explainable
models and zero-shot learning.

KEYWORDS
Knowledge-enhanced Reasoning, Explainable AI, Deep learning,
Knowledge graphs

ACM Reference Format:
Xuehao Liu, Sarah Jane Delany, and Susan McKeever . 2021. Wider Vi-
sion: Enriching Convolutional Neural Networks via Alignment to External

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MRC’21, March 12, 2021, Jerusalem, Israel
© 2021 Copyright held by the owner/author(s).

Knowledge Bases. In Proceedings of the 1st International Workshop on Ma-
chine Reasoning (MRC’21), March 12, 2021, Jerusalem, Israel. ACM, New York,
NY, USA, 9 pages.

1 INTRODUCTION
Deep Learning models are considered to be black boxes, with a lack
of visibility of layers and decisions paths [8]. With the increasing
complexity of models, research has focused on providing explana-
tions to explain the relationship between model inputs and outputs
[2, 13]. Explanations can be used for several purposes. One purpose
is to underpin the fine-tuning and achievement of higher accura-
cies [16, 17]. Another is to help researchers identify why an image
input has been incorrectly interpreted [30]. Other work in the field
has shown that different layers of the CNNs interpret different
levels of visual features within the image [12, 31, 34, 43]. Current
explanations of CNNs that interpret predictions are limited to in-
terpreting the relationship between inputs, feature activation and
outputs generated from the training dataset. There is no additional
insight or knowledge available outside the knowledge embedded
in the training dataset. Selvaraju et al. [30] highlighted the areas
of features that make most contribution to the output label. How-
ever, this work was unable to show the reason why these areas are
combined together. Bau et al. [4] involved more concepts to explain
features that CNNs are detecting, such as textures, colours, and
scenes. They showed that specific hidden units in the network are
detecting particular semantically meaningful concepts. However,
a richer explanation for features from a wider pool of knowledge
beyond the training set is still missing. CNN explanations with no
external knowledge are able to indicate which individual features
are activated for outputs, but will be unaware of the semantic con-
cepts behind these features, or indeed, how they relate to other
outputs. A richer knowledge driven explanation (akin to a human
who has real world knowledge) could show, for example, that ear,
paw and tail features were appearing in a particular dog image; that
dogs generally have such features, and indeed further reason that
these features may appear for other previous unseen animal types
to help identify them. Mitsuhara et al. [27] use attention maps and
manual image labelling in the direction of such fine-tuned explana-
tions. However, manual labelling is not practical for large image
datasets.

Inspired by the work of Lecue [19], our approach is based upon
aligning a CNN to an external knowledge base. We hypothesise
that by aligning a trained CNN model to an external knowledge
base, we can discover semantically meaningful labels for activated
CNN features. We also hypothesise that we can use the alignment
process to identify an unseen output (i.e. a class not included in the
training data) based on CNN feature activations.

ar
X

iv
:2

10
2.

11
13

2v
1 

 [
cs

.C
V

] 
 2

2 
Fe

b 
20

21



MRC’21, March 12, 2021, Jerusalem, Israel Liu, et al.

We represent the CNN and the external knowledge base as two
separate graph structures. The premise is that outputs in the CNN
(e.g. dog) and their associated activated features align with concepts
in the knowledge graph (i.e. dog) and its associated connected nodes
(e.g. tail, paws, ears). We then align these two graphs, to create
a shared embedding space. We can then locate labels for CNN
feature activations in the external knowledge base, via distance
measurement in the embedding space. This labelling supports an
explanation of a CNN decision. It also paves the way for detecting
unseen classes in our CNN, via identification from activated features
mapped to the external knowledge base.

We demonstrate and test our approach using the external knowl-
edge base, ConceptNet [33]. For the CNN as a graph, we use VGG-16
[32, 43] where the feature layers represent visual features. We align
features of the CNN and entities in the knowledge graph using an
entity alignment method, using the GCN-Align method [41].

Our evaluation focuses on two parts (1) whether we have cor-
rectly aligned the CNN and knowledge graph and (2) the effec-
tiveness of our embedding space for labelling CNN features. The
remainder of the paper is structured into Related Work, our Ap-
proach, explained in detail, and our Experimental evaluation and
results. In our conclusion, we cover possible future work directions.

2 RELATEDWORK
The closest domain to our work is Explainable AI, as we are aiming
to discover the meanings of CNN features. For CNNs, explainable
AI techniques started with intuiting what features are being de-
tected in an image. One way of visualizing features is to trace the
gradients back to the input image [34, 43]. The resultant highlight-
ing contour on the input image shows the pattern that the filter is
detecting. It also shows that later layers closer to the output will
detect higher object level patterns, while earlier network layers
detect features that are more basic, such as textures. Tracing back
the gradients not only provides a visualization of features, but also
highlights the part of an image that leads to the CNN prediction,
such as Deconvolution [31, 43], Layer-Wise Relevance Propagation
(LRP) [3], DeepSHAP[22], and Grad-CAM [30]. Another explana-
tion approach is to generate an image from noise, and the image
maximizes the prediction score [28, 31]. Although such images
may not resemble any meaningful object, the patterns found by
the CNNs are informative. Generally, while the visualisation of de-
tected features can highlight what and where CNNs have focused
in an image, the meaning of the feature is still unknown until it is
interpreted further. Bau et al. [4] advanced this interpretation via
labelled bounding boxes around concepts within the dataset im-
ages. By comparing the activated area of a feature with the ground
truth areas, activated features can be identified as specific concepts
within an image.

These explanation approaches can only find explanations based
on knowledge gleaned from the training dataset. To find an expla-
nation in a broader knowledge space, we combine the CNN with a
knowledge graph in order to assign and enhance feature meanings.
We note that this approach of bringing knowledge graphs into ma-
chine learning systems in order to expand knowledge beyond the
training set is gaining traction in the machine learning research
domain - and is applied to both image classification and zero-shot

learning. For image classification, Marino et al. [24] used labels of
the COCO dataset [21] to build a knowledge graph. Both images
and concepts of the COCO dataset are from the lexical database,
WordNet [26]. They applied a Graph Search Neural Network(GSNN)
to do reasoning through the graph, and thus improved mean av-
erage precision. In zero-shot learning, Lee et al. [20] also built a
knowledge graph using WordNet. Using the features of ResNet [15]
as input, they used a GSNN to infer unknown classes. Wang et al.
[40] used WordNet, Never-Ever-Language-Learning (NELL) [7] and
Never-Ever-Image-Learning (NEIL) [9] to build a knowledge graph,
where this graph takes Glove [29] word embeddings as input. They
applied a Graph Convolutional Network(GCN) on the graph to
generate the weight of the last layer of ResNet, so that this updated
ResNet model can then recognise the nodes in the knowledge graph.
In Zero-shot Action Recognition, Gao et al. [11] used ConceptNet
[33] to build a knowledge graph. In their approach, both Word2vec
[25] and GoogleNet [38] features are used in parallel as input. Two-
Stream Graph Convolutional Network (TS-GCN) is applied on the
graph to recognize actions.
The above research indicates that using knowledge graphs as ex-
ternal assistants can benefit and expand the knowledge of current
deep learning systems. In our case, where we are linking a CNN
to an external knowledge base for feature labelling and network
insights, We require entity alignment methods to correctly map
our CNN to the knowledge base. Entity alignment is about aligning
nodes in two separate graphs that have the same semantic meaning.
The most intuitive way of matching two entities is to compare the
traditional language features [1], such as n-grams and TF-IDF[35].
Recently, with the help of node embedding [6], entity alignment
has been done by minimizing the distance between embeddings of
labelled nodes with same meanings from two separate graphs [14].
In addition, embeddings of the attributes for each node (from the
graph) can be also used for minimizing distance between two nodes
[36, 39]. Sun et al. [37] introduced a bootstrapping strategy to con-
sider nodes that have a distance small enough as the labelled nodes
when more training steps are made. The bootstrapping strategy
provided a better alignment accuracy on Hit@1 score. All of these
methods can align nodes in two graphs. We apply GCN-Align[41]
as our Entity Alignment method as it could do alignment only using
structure information such as neighbours and relationships.

3 APPROACH
An overview of our approach is shown in Fig.1. First, we build two
graphs from the knowledge base and the CNN(Fig.1(a-b)). We then
apply entity alignment by aligning the labelled nodes across these
two graphs (Fig.1(c)) that have the same meaning. Finally, in the
embedding space generated by the entity alignment stage, we ex-
plore the knowledge graph nodes which are the nearest neighbours
of the CNN feature nodes with the goal of labelling the CNN fea-
ture nodes, based on equivalent nodes aligned from the knowledge
graph. The following sections will introduce the details of each
step.

3.1 Building a graph from a knowledge base
Knowledge bases are mainly stored as two kinds of triples: (head, re-
lationship, tail) and (entity, property, value). The first one represents



Wider Vision: Enriching Convolutional Neural Networks via Alignment to External Knowledge Bases MRC’21, March 12, 2021, Jerusalem, Israel

image

VGG

output

(a) Starting point

Knowledge
base CNN

(b) Graph Building

Knowledge
graph

CNN
graph

(c) Entity Alignment

Knowledge
graph

CNN
graph

(d) Nearest neighbour finding

Embedding space

Figure 1: Overall diagram for our approach

the relationships between entities, such as (leopard, IsA, cat) [33].
An example of the second kind is (Texas, areaTotal, “696241.0”) [36].
For our purposes, we use the first kind of triple, which describes
relationships explicitly. Triples can have associated weights which
represents the strength of the relationship between the head and
the tail entities. To build a graph from the knowledge base, entities
in the knowledge base become nodes in the graph. Since the knowl-
edge base is very large as we are using ConceptNet, we will use a
subset. The starting points of building the knowledge graph are the
entities from the knowledge base that have the same meaning as
the CNN outputs (i.e. classes). Using a breadth-first search strategy
through the knowledge base, we then add in other entities that are
directly connected to these entities(i.e. one-hop) that have a specific
relationship and weight. These knowledge graph outputs nodes
are connected to the nodes from the knowledge base that had the
largest triple relationship weights. There are many kinds of triple
relationships (such as IsA, HasA). In an ideal knowledge base, we
would aim to include only those triples that are relevant to visual
features. As we do not have this kind of knowledge base, we use
ConceptNet [33], which is an existing knowledge base and adjust
it by selecting relationships that are more likely to map to visual
features. For instances, triple (A cat, HasA, a nose) is more related
to visual information than triple (a cat, Desires, meow). We have
explored the results using “IsA” and “HasA’, but more experiments
using different combinations of relationships can be done in the
future work.

3.2 Building a graph from the CNN
The visualization work of Zeiler and Fergus [43] and other re-
searchers have already shown that in a CNN, the features in the
earlier layers in the network (close to the input) are detecting lower-
level features. In a deep CNN such as VGG-16, the features in CNN
outline the contour of some part of the input image [43]. The work
of Grad-CAM[30] reveals that the area representing the shape of
prediction is the weighted combination of these CNN features.
These works show that the prediction is made according to the
features that are detected. The purpose of this step is to generate a
graph from CNN that contains the outputs and the features that will
bring most contribution to the outputs (akin to components of the
output).The features in the higher network layers (close to output)
are combinations of lower level features with different weights.
The visual feature for building our CNN graph is from the flatten
layer. The flatten layer is the highest layer containing convolutional

kernels, and has the highest level features. After the flatten layer,
the fully connected layer combines the features in the flatten layer
to detect the target classes. However, information is also lost during
this combination. Therefore, we use the flatten layer features to
build the CNN graph as it is a balance point of selecting features
that are between too low and too high. We let each feature and each
output be a node in the graph (Fig.2). We want to connect those
most relevant feature nodes with output nodes, to build a graph
that the outputs and the important features are connected with
each other. When an image is pushed into CNN, some features are
activated. We want to choose the important features among these
activated features. There are several methods that we can choose
from to rank the importance of a feature for an output including
Pearson correlation [5], DeConvolution, Guided Backprop [34], LRP
and DeepSHAP. We select Pearson correlation because it is both
intuitive and widely used for ranking associations. Other methods
can be tested in the future.

Step 1: Connect output nodes In the CNN side, the only thing
we know are the labels of outputs. In the knowledge graph, we can
locate these output nodes (a "dog" output in CNN will map to a
"dog" node in the knowledge graph). Therefore, the CNN output
nodes are the anchors to find meanings of visual features. Before
attempting to connect any CNN features to CNN output nodes, we
connect those CNN outputs to each other, where those equivalent
output nodes in the knowledge graph are directly connected to
each other. This helps the entity alignment process to locate at least
these output nodes, and thus enable the process to converge.

Step 2: Connect output nodes with visual featuresWe then
want to connect the most important CNN feature nodes correctly
to the CNN output nodes, by identifying the subset of features that
are most activated for each class. We iterate through all the images
in the dataset that trains the CNN(e.g. ImageNet), and derive an
average of the importance (correlation) of each feature per output
class. Now we know for each output node which features are most
important. For example, for all images containing dog, features
detecting tails and legs may have a higher activation. For each class,
We average the correlation for each feature through the whole Im-
ageNet dataset for that class. So, in the case of output node ’dog’,
visual feature nodes related to tails and legs likely be connected
to that output node after averaging the feature correlations. Fig.2
shows a diagram of this process, simplified to show a subset of fea-
ture and output nodes. In Fig.2(a), the width of each line represents
the strength of correlation of a feature to an output node. On the



MRC’21, March 12, 2021, Jerusalem, Israel Liu, et al.

right side, the red nodes are the output nodes, and the blue ones
are the CNN features.

Visual
feature

output

(a) CNN
(b) CNN
graph

Figure 2: Diagram for building a graph from CNNs

3.3 Entity Alignment: aligning the CNN and
knowledge graphs

Nowwe have our CNN graph and the knowledge graph. The process
in the first two steps of Fig.1 is finished. The CNN graph contains the
output nodes (one per label) and the most important features nodes
associated with each output node. The knowledge graph contains
the equivalent output nodes as the CNN, having been specifically
selected from the knowledge base. The entity alignment algorithm
will take the two graphs as input and generate embeddings for each
nodes, so that all the nodes in the two graphs will be represented
in the same embedding space. Similar to word embeddings [18],
the distance in the embedding space between each pair of nodes
reflects the semantic distance between them. For a node in a graph,
and that node is represented in the embedding space, the process of
finding the corresponding node from the second graph with similar
meaning is to look for the closest neighbour in the embedding
space.

To align two graphs successfully, their structure must be similar.
However, the number of edges in the knowledge graph is signifi-
cantly smaller than those in the CNN graph. Therefore, we have to
select a subset of the edges in the CNN graph to match the number
in the knowledge graph. There are two ways we can approach this:
(1) For a knowledge graph that has 𝑘 edges, we sort all the correla-
tions between visual features and output nodes in CNN, and take
the top 𝑘 correlations with the feature nodes into account. (2) For a
CNN output node 𝑛𝑜𝑑𝑒𝑖 , there are 𝑘𝑖 visual features. We select the
same number of 𝑘𝑖 edges of 𝑛𝑜𝑑𝑒𝑖 in the knowledge graph in order
to build two graphs with similar structure.

Correlations may be positive or negative. Negative gradients [30]
and correlations indicate that a particular feature is not predictive of
a current output node. Thus, we only consider positive correlations,
by matching the edge number(𝑘𝑖 ) of knowledge graph.

In order to create the embedding space during the alignment
process, we need to train GCN-Align with matching pairs of CNN/
knowledge graph output nodes. The outputs classes (from the Im-
ageNet dataset) in CNN form our CNN nodes, and the equivalent
concepts in Concept net form our knowledge graph nodes, to pro-
vide us with 1000 node pairs. We select 90% of the pairs randomly

as the training set. The remaining 10% of the pairs will be the test
set. The training process is to minimize the distance between these
90% pairs of nodes. The testing process is to check among those
10% pairs of nodes to test whether in the generated embedding
space, the output node is the closest to the equivalent node in the
knowledge base.

3.4 Evaluation approach
To explore our hypotheses in the introduction session, we examine
the embedding space and evaluate our feature labelling system in
two ways.

Alignment performance Firstly, we evaluate the entity align-
ment process by measuring whether we can align the equivalent
output nodes across the knowledge graph and the CNN graph. We
use Hit@1 score to show the performance of entity alignment, as
used in other papers [41, 42]. In the embedding space, we select the
nearest knowledge graph node to each CNN output class node in
the test set, based on Euclidean distance. The Hit@1 measures the
proportion of the CNN output nodes in the test set whose closest
neighbour is the corresponding knowledge graph node with the
same meaning.

Hit@k-nns chart Secondly, once we have established via the
Hit@1 score that equivalent output nodes (from the CNN and
knowledge graphs) are located together, the neighbourhood of a
Knowledge Graph node should be fully explored. We will use the
closest knowledge base node to a CNN feature node to label the
CNN feature node. The feature labelling system is the embedding
space generated by the previous aligning step. A smaller distance
between them means the visual feature is more likely to detect that
meaning. We introduce the Hit@k-nns Chart. Here an independent
image test dataset is used, which is independent of the training
set used to train the CNN. The target classes i.e. output nodes are
different from the dataset we used for training in Entity Alignment.
For each test image, Hit@k-nns Chart will explore 𝑘 nearest visual
feature neighbour nodes of the label of that image. The level of
activated visual nodes in these neighbours will reflect how well
the embedding space has captured the semantic meaning of visual
features. Here is the steps of plotting Hit@k-nns Chart:

• A test image is passed through the pre-trained CNN.
• Feature nodes that are activated for that image will be iden-
tified.

• The set of k feature nodes that are the nearest neighbours of
the target output knowledge graph node for the test image
will be identified.

• The percentage of nearest neighbour feature nodes that are
activated will be measured. (i.e. Hit@k-NN score)

• Both Hit@k-NN for a single image as k increases, or aggre-
gated over a set of test images, is plotted.

The Hit@k-NN score of a test image will be plotted in a graph
where the x-axis is the value 𝑘 , which is the number of explored
CNN feature nodes that are nearest neighbours. The y-axis is the
percentage of activated nodes. In a perfect situation (as shown in
Fig.4), all these nearest CNN feature nodes should be activated. The
shape of the curve should be high for low values of k and dropping
down as k increases. The perfect shape is drawn for the situation
that assuming that all the closest CNN feature nodes are activated.



Wider Vision: Enriching Convolutional Neural Networks via Alignment to External Knowledge Bases MRC’21, March 12, 2021, Jerusalem, Israel

CNN backbone VGG-16(ImageNet)
Importance measurement Pearson Correlation
Hit@k chart test set COCO dataset
Knowledge Base ConceptNet 5.5
Entity Alignment method GCN-Align

Table 1: Experiment details

All other not activated is not near the target output knowledge
graph node.

Embedding space visualisation We also visualise the gener-
ated embedding space to clearly show the placement of the nodes
and the distances between CNN feature nodes and knowledge graph
nodes by mapping it to a two-dimensional space using t-SNE [23].
We integrated Deconvolution [31] into the visualisation so that
we display the contour that the visual feature node is detecting.
An example of this can be seen in Figure 5. In the middle it is the
t-SNE mapped embedding space. For each visual feature, there is
the visualisation in the grey box to the right of the test images.

3.5 Experiment details
This section outlines the implementation details of our experimental
evaluation.

We use the VGG-16 [32] model as our CNN. The version of
VGG-16 that we used is trained on the ImageNet dataset. In VGG-
16 the flatten layer is a 25088 dimensional vector and output is
a 1000 dimensional vector, as the VGG-16 used here is trained
to distinguish between 1000 classes. We use the training set of
ImageNet [10] to calculate the Pearson Correlation between image
features and output nodes to select important features from the
flatten layer for our CNN graph. In the entity alignment process,
typically a large number of nodes - up to 100,00 - are used for
training the alignment algorithm. [36, 41, 44]. CNNs, however, do
not typically detect enough categories to support this scale of entity
alignment training. In our case, the entity alignment process is
driven by the number of CNN outputs nodes. The 1000 categories
in the ImageNet datasets form the combined testing/ training set in
GCN-Align training process. To further test the embedding space
generated by GCN-Align, we use a separate image dataset, the
COCO dataset [21]. We identified test images from COCO whose
labels do not occur in the training images in ImageNet and these
images were used for testing.

The knowledge base we used for building the knowledge graph is
ConceptNet 5.5 [33]. We identified entities in ConceptNet that were
exactly the same as the 1000 categories of the ImageNet dataset.
These output nodes became the nodes of the knowledge graph built
from ConceptNet. We also identified an additional 62 categories
from COCO which were the different from the ImageNet categories
and these entities were included as nodes in the knowledge graph
to allow us to use them at a later stage for testing. We selected the
“IsA" and “HasA" relationships, as we expect that these relationships
are more likely to be between visual features. We suggest that
the “IsA" relationship has the potential of an inference relationship
between nodes and may be useful for zero-shot Learning. The
“HasA" relationship could help us find the components of an object
whichmay be useful in explanation.We built two knowledge graphs

for our evaluation, the first from the “IsA" relationships with the
output nodes, the second from the “HasA" relationships.

For entity alignment, we used GCN-Align [41]. This method is
purely based on the graph structure, which is suitable for our pur-
poses. The input to GCN-align does not need any word embeddings
or attribute embeddings. Table.1 shows details of experiments.

4 RESULTS AND DISCUSSION
4.1 Alignment performance

20 40 60 80
percentage of edges

10

20

30

40

50

Hi
t@

1

(1)KGtoCNN
(2)CNNtoKG
(3)TOTAL

(a) Hit@1 score of using the “IsA"
relationship.

20 40 60 80
percentage of edges

0

10

20

30

40

Hi
t@

1

(1)TOTAL
(2)KGtoCNN
(3)CNNtoKG

(b) Hit@1 score of using the
“HasA" relationship

Figure 3: Hit@1 score comparison for three different graph
building approaches. (1) KG-to-CNN: Letting the knowledge
graph match the edge number of each node in the CNN
graph. (2) CNN-to-KG: Letting the CNN graph match the
edge number of each node in the knowledge graph. (3) TO-
TAL: Do not match the edge number of each node, and just
match the total number of edges in two graphs

Hit@1 score measures whether the closest neighbour of a CNN
output node is the corresponding knowledge graph node with the
same meaning. Fig.3 shows the align scores (Hit@1) based on three
different approaches to building our two graphs, depending on how
the edges are added between nodes. The x-axis is the percentage
of total edges selected from the knowledge base and the y-axis
is the value of Hit@1 score. Edges are added 10% at a time in all
cases. This score measures the proportion of test set nodes from
one graph that are the closest node to the matching node from the
other graph in the embedding space.

Here are the three ways of adding edges:
• KGtoCNN starts with the nodes in the knowledge graph and
at each iteration adds 10% of the total number of KG edges
to each CNN node. At the same time, two corresponding
nodes with same meaning in two graphs have the same edge
number.

• CNNtoKG does the opposite starting with the CNN and at
each iteration adding 10% of the total number of CNN edges
to each KG node. Also, two corresponding nodes with same
meaning in two graphs have the same edge number.

• TOTAL starts with the nodes in the knowledge graph and
at each iteration adds 10% of the total number of KG edges
to each CNN node, too. But TOTAL does not keep the edge
number of each pair of nodes same.

In Fig.3a (3) TOTAL shows how the Hit@1 score changes when
we add the same number of edges over the 1000 categories each
time when building our CNN graph and knowledge graphs (and



MRC’21, March 12, 2021, Jerusalem, Israel Liu, et al.

where the knowledge graph is derived from extracting the is-a
relationships from ConceptNet). The Hit@1 score for adding 10%
of total number of edges is 43% which is the average performance
achieved by GCN-Align generally[41]. We observe that the perfor-
mance is dropping as we add more edges. Hit@1 score becomes
lower than 10% after we add 40% of the edges. (1)KG-to-CNN has
a different strategy of adding edges.We still add 10% of the total
edges each time. However, across all those 1000 output nodes, we
let the number of edges from the knowledge graph node match the
number of edges in the corresponding node in CNN. For example,
at the step of 10%, on the CNN side, we select the top 28994 edges
among all the 289944 edges. For example, the output node “bench"
may have 𝑘 edges in this 28994 edges. On the knowledge graph
side, we sort all the edges of “bench" in descending order and select
the top 𝑘 edges. If in the knowledge graph “bench" does not have
enough edges, we will select all of them. This process ensures that
every output node will have almost the same number of edges. The
Hit@1 score for KGtoCNN is more stable compared to (3)TOTAL.
Unlike (1)KG-to-CNN, which is making knowledge graph match
CNN graph, (2)CNN-to-KG is letting the CNNmatch the knowledge
graph. The alignment score performance is similar.

Fig.3b shows the Hit@1 score of aligning the CNN graph with
the knowledge graph, but here the knowledge graph is created from
the “HasA" relationships in ConceptNet. Compared to the graph
generated from “IsA" relationships, the graph created from “HasA"
relationships is more sparse. In total there are 13774 edges and
1263 nodes. The figure shows that entity alignment performance
as the number of edges increase is very similar to that of the “IsA"
relationships across the three different approaches to building the
graphs - although the performance using a “HasA" graph is slightly
lower than using an “IsA" graph. This suggests that the CNN graph
can be aligned with knowledge base graphs that are generated from
different kinds of relationships.

4.2 Hit@k-nns chart
As we have a reasonable alignment performance for entity align-
ment based on the Hit@1 score, we can confirm that the graph
alignment process places output nodes in our two graphs with the
same semantic meaning very close to each other in an embedding
space. Now we explore this embedding space to see whether it
places CNN feature nodes close to the associated knowledge base
nodes. To assess this, we used the embedding spaces generated by
(1)KGtoCNN in Fig.3 with 50% of edges.

The COCO dataset is used to evaluate the embedding space
generated from the graph alignment process. The VGG-16 CNN
has never been exposed to the COCO dataset so it provides us with
an independent set of test images.

Fig.4 is an example of Hit@k-nns chart for an image from COCO
validation set. Fig.4e shows the image in question. It has the labels of
“truck" and “person", both of which can be seen in the image. Neither
of these two labels are in the ImageNet dataset.We identified the 200
nearest CNN feature nodes around the “truck" and “person" node
from the knowledge graph. The graph represents the percentage of
CNN feature nodes within that 200 nodes with an activation larger
than a threshold of 0 to exclude negative correlations.

0 50 100 150 200
number of nearest nodes

0

25

50

75

100

pe
rc

en
ta

ge
 o

f a
ct

iv
at

ed

category: /c/en/person
threshold:0
perfect shape

(a) Person(“IsA")

0 50 100 150 200
number of nearest nodes

20

40

60

80

100

pe
rc

en
ta

ge
 o

f a
ct

iv
at

ed

category: /c/en/truck
threshold:0
perfect shape

(b) Truck(“IsA")

0 50 100 150 200
number of nearest nodes

0

25

50

75

100

pe
rc

en
ta

ge
 o

f a
ct

iv
at

ed

category: /c/en/person
threshold:0
perfect shape

(c) Person(“HasA")

0 50 100 150 200
number of nearest nodes

0

25

50

75

100

pe
rc

en
ta

ge
 o

f a
ct

iv
at

ed

category: /c/en/truck
threshold:0
perfect shape

(d) Truck(“HasA")

(e) The example image
Figure 4: Hit@k-nns charts of the example image. It has the
label of “person" and “truck".

In Fig.4 the green dot line is the Hit@k-NN chart is the theo-
retically perfect situation that all the activated CNN feature nodes
are the nearest neighbours of the label node, using a threshold of 0.
Fig.4a shows the embedding space generated only using “IsA" rela-
tionship, it shows that a high proportion of the nearest neighbours
of the node “person" are activated CNN feature nodes.

Fig.4b shows that at 𝑘 = 1 all CNN features that are closest to the
truck node are all activated. Although the proportion of activated
nodes drops as 𝑘 increases, this does not necessarily suggest poor
performance as all the visual feature nodes will not necessarily
need to be activated to detect the content in an image.

For the other embedding space generated by “HasA", the result
is not as good. Fig.4c and Fig.4d show that the Hit@k-nns line
is far from the perfect shape. This shows when using the “HasA"
relationship to build the knowledge graph that the nearest CNN
feature nodes surrounding “person" and “truck" do not directly
relate to these visual concepts.

4.3 Embedding space visualization
Since the feature labelling system we proposed uses GCN-Align
to generate the embedding space, it produces a 200-dimensional
vector for describing the location of each node i.e. the node embed-
ding. To visualize the embedding space, we applied t-SNE[23] it
and mapped the node embedding to a 2-dimensional space. Fig.5
is a section of the visualisation of the nearest nodes in the embed-
ding space generated from the “IsA" for the test image shown in
Fig.4. The nodes shown in this visualisation are all those that are



Wider Vision: Enriching Convolutional Neural Networks via Alignment to External Knowledge Bases MRC’21, March 12, 2021, Jerusalem, Israel

Flatten index: 12723

Flatten index: 13235
Flatten index: 8115Flatten index: 9651

Flatten index: 8627

Flatten index: 17331

Flatten index: 13747
Flatten index: 6579

ConceptNet: screen

VGG output: 
screen

VGG output: monitor

VGG output: desktop 
computer

VGG output: television 

ConceptNet: tv

ConceptNet: 
television 

Figure 5: An example of t-SNE mapped embedding space generated only using “IsA"

Flatten index: 13902
Flatten index: 11342Flatten index: 7246

Flatten index: 10318

Flatten index: 7758

Flatten index: 9806

VGG-16 output: bookshop

VGG-16 output: photocopier

ConceptNet: many shelves

ConceptNet: lots of books

ConceptNet: 
literature

ConceptNet: books

ConceptNet: many 
books and magazines

ConceptNet: 
thousands of books

Flatten index: 13390

ConceptNet: 
bookshop

ConceptNet: 
photocopier

Figure 6: An example of t-SNE mapped embedding space generated only using “HasA"

found in the section of the embedding space represented in the
visualisation. No nodes have been removed. In this figure the red
circles are the ConceptNet output nodes. The yellow “+" are the
VGG-16 network output nodes. The blue “×" symbols represent
the visual CNN feature nodes in the flatten layer. The red square

symbols are the ConceptNet nodes that are connected to the output
nodes. For each CNN feature node in flatten layer, we select the
test image from the COCO dataset that has the highest activation
of that feature. In addition to visualising the embedding space we
use Deconvolution to visualise the CNN feature which is displayed



MRC’21, March 12, 2021, Jerusalem, Israel Liu, et al.

beside the test image (the grey box) and shows the focus of the
CNN feature for that image.

In Fig.5 we can see that nodes with similar semantic meanings are
located close to each other, for example, the “screen" node network
output node from VGG-16 and the “screen" node from Concept-
Net. Nodes that have similar meanings, such as “tv" and television
from ConceptNet, are positioned almost at the same point. The
closest network output features all relate to objects that are similar
semantically, “monitor", “television", “desktop computer", “screen".
For each of these visual features, the Deconvolution visualization
shows that the content they are detecting matches the meanings of
these nodes. This visualisation shows that for the embedding space
generated for the graph alignment of ConceptNet using the “IsA"
relationship captures this “IsA" relationship with all nodes in this
version of the embedding space related to similar objects.

Fig.6 is an example of the embedding space generated from a
ConceptNet graph using the “HasA" relationship. In this figure,
features detecting books are also near to the nodes from both VGG-
16 and ConceptNet. Moreover, in comparison to Fig.5, there are
significantly more ConceptNet nodes in this neighbourhood, the
green squares which are not the output nodes that the graphs
were aligned on. These nodes are potentially new categories and
the embedding space has located them close to relevant visual
features. The visualization shows that our approach can place visual
features in a semantic embedding space and the meanings of nearest
neighbour nodes could be a reference for naming the visual feature.

5 CONCLUSION
Current research works can explain visual features with several ex-
ternal meanings, but the feature labelling system is limited because
the concepts for explaining visual features are selected manually.
In this paper, we have presented an approach, based on entity align-
ment, to finding the meanings of visual features in CNNs using all
the related concepts selected automatically from a large knowledge
base, ConceptNet. We built a graph from VGG-16 by selecting the
important features, and applied entity alignment between the sub-
graph of ConceptNet and the VGG-16 graph to match the visual
features with semantic meanings. The entity alignment reached an
average level Hit@1 score of GCN-Align. The Hit@k-nns charts
shows that the true label of an image is surrounded by activated
visual features. The visualization of visual features with t-SNE map-
ping of embedding space shows that the visual features are close
to the concepts that they are detecting, and those concepts will
explain the meaning of that visual feature.

The main limitation of our work at this point is the knowledge
base is too noisy. It is full of non-visual concepts, such as (a cat,
Desires, meow). We know it may be irrelevant because it is de-
scribing a sound. In other cases, however, it is hard to tell whether
the triple is visual or not. These non-visual triples will interfere
with the alignment process. Another potential limitation is that the
visual feature may not have the same meaning for all the time. A
same visual feature may be detecting the screen of a monitor in
one image but it may be still detecting the frame of a window in
another image.

Having shown the promise of enriching CNNs with external
knowledge bases via entity alignment, the next phase of our work

will involve the following (1) Acquiring a more suitable knowledge
source. The current external knowledge source, ConceptNet, is built
from a large language corpus. It was not created for the purpose
of labelling or analysing visual features, so the noise in the knowl-
edge base will perturb the feature labelling system. (2) Evaluating
additional methods for finding the most important features/nodes.
(3) Using the embedding space to reason for unseen classes for
Zero-shot learning based on feature matching. (4) Combining with
object detection: After doing reasoning using the embedding space,
we could follow the existing methods [30] to locate the area of an
object.

ACKNOWLEDGMENTS
This work was funded by Science Foundation Ireland through the
SFI Centre for Research Training inMachine Learning (18/CRT/6183)

REFERENCES
[1] Ismail Akbari, Mohammad Fathian, and Kambiz Badie. 2009. An improved mlma+

and its application in ontology matching. In 2009 Innovative Technologies in
Intelligent Systems and Industrial Applications. IEEE, 56–60.

[2] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Ben-
netot, Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-López, Daniel
Molina, Richard Benjamins, et al. 2020. Explainable Artificial Intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible AI. In-
formation Fusion 58 (2020), 82–115.

[3] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,
Klaus-Robert Müller, and Wojciech Samek. 2015. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance propagation. PloS one 10,
7 (2015), e0130140.

[4] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. 2017.
Network dissection: Quantifying interpretability of deep visual representations.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
6541–6549.

[5] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. 2009. Pearson
correlation coefficient. In Noise reduction in speech processing. Springer, 1–4.

[6] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In Advances in neural information processing systems. 2787–2795.

[7] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hr-
uschka, and Tom M Mitchell. 2010. Toward an architecture for never-ending
language learning. In Twenty-Fourth AAAI conference on artificial intelligence.

[8] Davide Castelvecchi. 2016. Can we open the black box of AI? Nature News 538,
7623 (2016), 20.

[9] Xinlei Chen, Abhinav Shrivastava, and Abhinav Gupta. 2013. Neil: Extracting vi-
sual knowledge from web data. In Proceedings of the IEEE international conference
on computer vision. 1409–1416.

[10] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[11] Junyu Gao, Tianzhu Zhang, and Changsheng Xu. 2019. I Know the Relationships:
Zero-Shot Action Recognition via Two-Stream Graph Convolutional Networks
and Knowledge Graphs. (2019).

[12] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2016. Image style transfer
using convolutional neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 2414–2423.

[13] Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and
Lalana Kagal. 2018. Explaining explanations: An approach to evaluating inter-
pretability of machine learning. arXiv preprint arXiv:1806.00069 (2018).

[14] Yanchao Hao, Yuanzhe Zhang, Shizhu He, Kang Liu, and Jun Zhao. 2016. A joint
embedding method for entity alignment of knowledge bases. In China Conference
on Knowledge Graph and Semantic Computing. Springer, 3–14.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[16] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. 2016. Examples are not
enough, learn to criticize! criticism for interpretability. In Advances in neural
information processing systems. 2280–2288.

[17] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via
influence functions. arXiv preprint arXiv:1703.04730 (2017).

[18] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In International conference on machine learning. 1188–1196.



Wider Vision: Enriching Convolutional Neural Networks via Alignment to External Knowledge Bases MRC’21, March 12, 2021, Jerusalem, Israel

[19] Freddy Lecue. 2019. On the role of knowledge graphs in explainable AI. Semantic
Web Preprint (2019), 1–11.

[20] Chung-Wei Lee, Wei Fang, Chih-Kuan Yeh, and Yu-Chiang Frank Wang. 2018.
Multi-label zero-shot learning with structured knowledge graphs. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 1576–1585.

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740–755.

[22] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model
predictions. In Advances in neural information processing systems. 4765–4774.

[23] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579–2605.

[24] Kenneth Marino, Ruslan Salakhutdinov, and Abhinav Gupta. 2016. The more
you know: Using knowledge graphs for image classification. arXiv preprint
arXiv:1612.04844 (2016).

[25] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[26] George A Miller. 1995. WordNet: a lexical database for English. Commun. ACM
38, 11 (1995), 39–41.

[27] Masahiro Mitsuhara, Hiroshi Fukui, Yusuke Sakashita, Takanori Ogata, Tsubasa
Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi. 2019. Embedding
human knowledge in deep neural network via attention map. arXiv preprint
arXiv:1905.03540 5 (2019).

[28] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. 2015. Inceptionism:
Going deeper into neural networks. (2015).

[29] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[30] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from
deep networks via gradient-based localization. In Proceedings of the IEEE interna-
tional conference on computer vision. 618–626.

[31] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2013. Deep inside
convolutional networks: Visualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034 (2013).

[32] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[33] Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. Conceptnet 5.5: An open
multilingual graph of general knowledge. In Thirty-First AAAI Conference on
Artificial Intelligence.

[34] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Ried-
miller. 2014. Striving for simplicity: The all convolutional net. arXiv preprint
arXiv:1412.6806 (2014).

[35] Yufei Sun, Liangli Ma, and ShuangWang. 2015. A comparative evaluation of string
similarity metrics for ontology alignment. Journal of Information &Computational
Science 12, 3 (2015), 957–964.

[36] Zequn Sun, Wei Hu, and Chengkai Li. 2017. Cross-lingual entity alignment via
joint attribute-preserving embedding. In International Semantic Web Conference.
Springer, 628–644.

[37] Zequn Sun, Wei Hu, Qingheng Zhang, and Yuzhong Qu. 2018. Bootstrapping
Entity Alignment with Knowledge Graph Embedding.. In IJCAI. 4396–4402.

[38] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1–9.

[39] Bayu Distiawan Trisedya, Jianzhong Qi, and Rui Zhang. 2019. Entity alignment
between knowledge graphs using attribute embeddings. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 33. 297–304.

[40] Xiaolong Wang, Yufei Ye, and Abhinav Gupta. 2018. Zero-shot recognition via
semantic embeddings and knowledge graphs. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 6857–6866.

[41] Zhichun Wang, Qingsong Lv, Xiaohan Lan, and Yu Zhang. 2018. Cross-lingual
knowledge graph alignment via graph convolutional networks. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing.
349–357.

[42] Kun Xu, Liwei Wang, Mo Yu, Yansong Feng, Yan Song, Zhiguo Wang, and Dong
Yu. 2019. Cross-lingual knowledge graph alignment via graph matching neural
network. arXiv preprint arXiv:1905.11605 (2019).

[43] Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolu-
tional networks. In European conference on computer vision. Springer, 818–833.

[44] Qi Zhu, Hao Wei, Bunyamin Sisman, Da Zheng, Christos Faloutsos, Xin Luna
Dong, and Jiawei Han. 2020. Collective Multi-type Entity Alignment Between
Knowledge Graphs. In Proceedings of The Web Conference 2020. 2241–2252.


	Abstract
	1 Introduction
	2 Related work
	3 Approach
	3.1 Building a graph from a knowledge base
	3.2 Building a graph from the CNN
	3.3 Entity Alignment: aligning the CNN and knowledge graphs
	3.4 Evaluation approach
	3.5 Experiment details 

	4 Results and discussion
	4.1 Alignment performance
	4.2 Hit@k-nns chart
	4.3 Embedding space visualization

	5 Conclusion
	Acknowledgments
	References

